Weighted Frechet Means as Convex Combinations in Metric Spaces: Properties and Generalized Median Inequalities
نویسندگان
چکیده
In this short note, we study the properties of the weighted Frechet mean as a convex combination operator on an arbitrary metric space (Y, d). We show that this binary operator is commutative, non-associative, idempotent, invariant to multiplication by a constant weight and possesses an identity element. We also cover the properties of the weighted cumulative Frechet mean. These tools allow us to derive several types of median inequalities for abstract metric spaces that hold for both negative and positive Alexandrov spaces. In particular, we show through an example that these bounds cannot be improved upon in general metric spaces. For weighted Frechet means, however, such inequalities can solely be derived for weights equal or greater than one. This latter limitation highlights the inherent difficulties associated with abstract-valued random variables.
منابع مشابه
Geodesic metric spaces and generalized nonexpansive multivalued mappings
In this paper, we present some common fixed point theorems for two generalized nonexpansive multivalued mappings in CAT(0) spaces as well as in UCED Banach spaces. Moreover, we prove the existence of fixed points for generalized nonexpansive multivalued mappings in complete geodesic metric spaces with convex metric for which the asymptotic center of a bounded sequence in a bounded closed convex...
متن کاملConvexity and Geodesic Metric Spaces
In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...
متن کاملOrthogonal metric space and convex contractions
In this paper, generalized convex contractions on orthogonal metric spaces are stablished in whath might be called their definitive versions. Also, we show that there are examples which show that our main theorems are genuine generalizations of Theorem 3.1 and 3.2 of [M.A. Miandaragh, M. Postolache and S. Rezapour, {it Approximate fixed points of generalized convex contractions}, Fixed Poi...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملBest proximity point theorems in Hadamard spaces using relatively asymptotic center
In this article we survey the existence of best proximity points for a class of non-self mappings which satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [A. Abkar, M. Gabeleh, Best proximity points of non-self mappings, Top, 21, (2013), 287-295] which guarantees the existence of best proximity points for nonex...
متن کامل